A comparison principle for the complex Monge-Ampère operator in Cegrell’s classes and applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex Monge-ampère of a Maximum

Pluri-subharmonic (psh) functions play a primary role in pluri-potential theory. They are closely related to the operator dd c = 2i∂ ¯ ∂ (with notation d = ∂ + ¯ ∂ and d c = i(¯ ∂ − ∂)), which serves as a generalization of the Laplacian from C to C dim for dim > 1. If u is smooth of class C 2 , then for 1 ≤ n ≤ dim, the coefficients of the exterior power (dd c u) n are given by the n×n sub-dete...

متن کامل

Discretization of functionals involving the Monge-Ampère operator

Gradient flows in the Wasserstein space have become a powerful tool in the analysis of diffusion equations, following the seminal work of Jordan, Kinderlehrer and Otto (JKO). The numerical applications of this formulation have been limited by the difficulty to compute the Wasserstein distance in dimension > 2. One step of the JKO scheme is equivalent to a variational problem on the space of con...

متن کامل

Quaternionic Monge-ampère Equations

The main result of this paper is the existence and uniqueness of solution of the Dirichlet problem for quaternionic Monge-Ampère equations in quaternionic strictly pseudoconvex bounded domains in H. We continue the study of the theory of plurisubharmonic functions of quaternionic variables started by the author at [2].

متن کامل

Continuity Estimates for the Monge-Ampère Equation

In this paper, we study the regularity of solutions to the Monge-Ampère equation. We prove the log-Lipschitz continuity for the gradient under certain assumptions. We also give a unified treatment for the continuity estimates of the second derivatives. As an application we show the local existence of continuous solutions to the semi-geostrophic equation arising in meteorology.

متن کامل

Sobolev Regularity for Monge-Ampère Type Equations

In this note we prove that, if the cost function satisfies some necessary structural conditions and the densities are bounded away from zero and infinity, then strictly c-convex potentials arising in optimal transportation belong to W 2,1+κ loc for some κ > 0. This generalizes some recents results [10, 11, 24] concerning the regularity of strictly convex Alexandrov solutions of the Monge-Ampère...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2009

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-09-04730-8